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Regular and irregular regimes of binary fluid convection excited by parametric resonance
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A set of two asymptotically correct amplitude equations for envelopes of two counterpropagating waves in
a horizontal layer of a binary fluid, excited by parametric resonance, is derived and studied. The only stable
stationary monochromatic solution possible is standing W&@W). It can lose its stability in several ways.
Sideband instability of SW, similar to that studied by Eckhaus, is possible here and results in either the onset
of SW with different wavelength or an irregular regime. The transitions caused by sideband instability are
studied numerically. A qualitative explanation of the irregular behavior is proppS&663-651X97)15702-6

PACS numbe(s): 47.35+i, 05.45+b, 47.27.Te

The growing interest in the study of time-modulated free  Earlier, the linear stability analysis of the equilibrium
convection, started first by Gershuni and Zhukhovitfkyy  state¢y=T=C=0 was carried out i}5,6]. Saunderst al.
is triggered by unfolding new mechanisms of instability. In[5] considered simplified free-free boundary conditions
such systems as binary liquidig], multilayer systemg3], Y=d2y=T=C=0 atz=0,1. A more realistic configuration
and nematic liquid crystalgt], which undergo Hopf bifurca- was considered by Terrone al. [6] for quite a narrow
tion in the absence of modulation, strong destabilizatiorrange of parameters, since the variety of mechanisms in-
based on the resonance phenomena can be observed in theded in the probleniDufour and Soret effects, an imposed
presence of modulatiof5—7]. solutal gradient makes a comprehensive study almost im-

It seems that less attention was paid to the fact that in apossible. They revealed a strong destabilizing effect of
extended system with translational and reflection symmetriegodulation on stability of the equilibrium for negativé,
undergomg Hopf bifurcation, when modulation amplitude fite 7 7, and resonant frequencies.

7 is small and the group velocity of an oscillatory mode does  Let us first briefly present the results of the linear stability
not vanish, the resonance-instability domain expands unianalysis of the equilibrium. The boundary conditions
formly when 7 increases. This results in a new set of ampli- = d,=T=3d,(C+T)=0 atz=0,1 are valid for rigid im-
tude equations, which due to nontraditional but relevant scalpermeable boundaries held at uniform temperature. The nu-
ing contains advective terms but leaves out the diffusivemerical procedure is similar to that used [i]: the basic
ones. In this paper we derive these equations by performingquations are projected onto a finite-dimension space using
a weakly nonlinear analysis of Soret-driven convection in e&he Galerkin method and the resulting set of the ODE’s is
binary mixture, although they may be encountered in a widesnalyzed using the Floguet technique. A typical stability map
class of extended systems with the above-mentioned symméisplays a set of neutral curvég (k) for various values of
tries. 7. In the unmodulated case;=0, the neutral curve is a
Consider an infinite horizontal layer of incompressible bi-manifold of Hopf bifurcation pointgFig. 1).
nary mixture heated from below and subject to vertical vi- When the modulation is turned on, the modes whose Hopf
brations. The basic equations are the Boussinesq equatiofgquency is resonant to the modulation frequency become
for a binary mixture with Soret effect and modulated bodystrongly destabilized. In Fig. 1 such a resonance mode has
force, normalized by the layer's depth and viscous time folk=3.12 and its Hopf frequency is w/2 (so-called strong

space and time, respectively, resonance
A frequency locking and destabilization of neighboring
(VA= 9,V i+ RP L1+ sinwt) dy(T+ W C)=N(V2y), modes leads to the emergence of resonance instability do-

mains confined by curve 1 and curves 2-5, respectively.
These domains are geometrically similar, and in the strong-

resonance case they expand proportionallyyt®©Our calcu-
lations carried out for different frequencies show that sec-
—C+LP 'VA(T+C)+dyp=N(C). ondary resonances, withw=2¢, m=2,3..., arealso
possible, but all these have a weak influence on the stability
Here ¢ is the stream functionT andC are deviations of threshold as the corresponding instability domains expand as
temperature and concentration from their linear equilibriumz;™.
profiles, respectivelyy,,d, denote derivatives with respect  Let us now turn to the weakly nonlinear analysis inside
to the corresponding variabl®l(f)=d,4d,f —d,pd,f; Ris  the resonance-instability domain. We introduce a small pa-
the Ray|e|gh numberp and ;] are frequency and relative rameterpu, measuring Subcriticality, and different time and
amplitude of modulation, respectivelp; is the Prandtl num- space scale, ,x,X. In the vicinity of the resonant fre-
ber; L is the Lewis number; and is the separation ratio quency, ie., ~when mo=20+O(x), one has
(Soret parametgr AR~ Ak~ ™~ u, thus, the relevant scaling for the “slow”

(PTIV2=a)T+ap=N(T),
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eliminated by using a moving frame of reference like in the
case of a single wave, because of the cross terms, describing
the waves’ interactions. To overcome this difficulty several
authors assumed smallnesssd®], used averaging over the
scaleX; [10], or focused on a single wave, neglecting the
second ong11].

The coefficients of Eqs(l) for Soret-driven convection
were calculated if12]. The group velocitys was found to
be finite, thus omitting the advective terms or pushing them
into the next ordefthat allows the derivation of the ampli-
tude equationyields incorrect equations in the unmodulated
case. In the case gfesonant modulation these terms take
their place in the amplitude equation naturally, due to the
appropriate scaling.

Consider monochromatiMC) solutions for Egs(1) in

the forma;=A;exp(KX+i6), j=1,2, where amplitudes,

and phase®; are real functions of. One readily obtains a
‘ 2 e set of three real equations fén ,A, and 6= 6,— 6, (due to
the translational symmetrg, + 6, decouples from the equa-
tions; sed 14]):

2300 ; ' : :
29 295 3 305 31 315 32

wave number kK

FIG. 1. A typical stability map of the equilibrium showing the
Rayleigh numbeR; vs wave numbek. Curve 1 shows the neutral
curve in an unmodulated case. Curves 2-5 corresponﬁ#@.
Parameters shown are relevant for 0.4% wt. water-ethanol mixture
at 15 °C[8]. If modulation is produced by vertical vibration of a
layer of the depth of 1.5 mm on Earth, then the dimensional ampli- n . 2 5
tude and frequency of vibrations aré50 cm and=1 sec’?, respec- 9:0={ Nqj+Ngi— ——sind|(A1+A3) +26,

! AA;
tively, for »=0.05.

9. A1= prAL+ nALCOD+ N1 AT+ N ASA,

9, A2= pr Ayt nALCOSI+ N1 AS+ N AZA,, ()

where§ is a generalized detuning coefficiedts K + a.
time and space variables is= ut, X=pux. A state of the Equations(2) were considered earlier by Rieclet al.
system is described by superposition of two counterpropagafi4] and Walgraef13] mainly in the supercritica{with re-
ing waves spect to unforced systemndomain, i.e., forp,=1. Our re-
sults, corresponding to the capg=—1, are in qualitative
agreement with those received fA4].

Equationg2) admit two kinds of stationary nontrivial so-
Here vectorU={y,T,C} describes the state of the system, jytions. The solution of the first kind, witth;=A,=A,
a;(7,X),ax(7,X) are complex amplitudes slowly varying ¢,=—,=@, describes standing wavésSw),
with time and space, angy ,u, are vertical eigenvectors of
the corresponding linear eigenvalue problem at the Hopf bi-
furcation point.

The coupled equations fax; anda, are obtained from
the solvability condition at ordeg®?. At this order one ob-
tains after a proper rescaling the following set:

U=a,u;(z)e'** Y+ a,u,(z)e oY+ c.c.

A2 =[n— 8= pA(n?+1)— (1+ 6n)2]/\i(1+n?),

7SiN@.=NAZ+68, N=Ai+N,, N=N /N

The stability of SW with respect to harmonic perturba-
tions (of the same wavelength as 3\Wan be studied in the
framework of Eqs(2).

SW branches off the trivial state of Eq) at the station-
ary bifurcation point »3=1+ &% supercritically (subcriti-

o o cally) [14] when n—§<0(>0). The most unstable mode
Here \,,\, are complex coefficientsy, = +1; indices  |osing stability first has the wave numbr=—a. In the
“r”and "i” from now on denote real and imaginary parts, case of subcritical bifurcation there is the saddle-node bifur-
respectively;n~ ™ is a real positive parameter representingcation point 7sy=(1+n&)/\/1+n?, where two branches

the rescaled amplitude of modulatiop:=ai—1 is a linear A4, (stablé and.4_ (unstabl¢ merge.

gain ande is the detuning parameter. In the casen>0 with a further increase of the modulation
The negative real part gf corresponds to the subcritical amplitudes, SW loses stability either with respect to oscil-

domain with respect to the unmodulated case. In the supefatory perturbation of SW-type at the Hopf bifurcation point

critical domain, i.e., above the neutral curve 1 in Fig. 1, they, = \/1/4+ (1/2n— 8), where stable periodic SW bifurcates

bandwidth of unstable modes sk~ x'/2, which calls for  supercritically, or with respect to perturbations of a traveling

two slow space scaleX,=u'/’x, X,=ux. From the solv-  wave's type atyr=+(hy —1)2+ (N +28)2/2, where the

ability condition at orderu one then obtains two equations stationary traveling wave bifurcates subcritically.

for a; anda, with advective termssdy a; and —sdy ay, Stability of periodic SW, corresponding to two-frequency

wheres is the group velocityf7,9]. These terms cannot be wave motion(waves with periodically time-modulated am-

d.a;— dyar=(N1|aq| 2+ \y|ay?+p)a; + na,, (1a

9,85+ dxap= (N3 |as|?+\j|ag?+ p*)a+ nay. (1b)
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FIG. 3. The time evolution of the Fourier spectrum of the stand-

FIG. 2. The phase diagram of a MC SW f@ n=—3 and(b)  ing wave’s envelope fofa) n=—3 and(b) n=—0.2. As an initial

n=—0.2. The curve SN consists of saddle-node bifurcation pointsgcondition we use a MC SW corresponding Ko=0.8, «=0 and

the curveS shows the linear stability threshold of the equilibrium K=—0.7, =0, respectively, perturbed by a weak noise. Their cor-

and consists of steady bifurcation points; shaded is the domain afsponding stationary states are SB-unstable and therefore collapse.

SB-stability of MC SW bounded by the curve SB. Insets: Bifurca- As a result, a different SB-stable stationary &Y or an irregular

tion diagram of MC SW obtained along the corresponding dashedegime(b) sets in.

line. The stable branch is shown by a solid curve, the unstable ones

branching subcritically by a dashed curve, and the SB-unstable ongase of SW. This allows us to study the envelope of a non-

by a dotted curve. monochromatic time-dependent SW using only one equation

for propagating, say, rightward component. Substituting

plitudesy, is next studied numerically. It loses stability while A,=0, a;=\; Y% into Eq. (1) yields
merging with unstable solutiond _ or origin A=0, produc-
ing a homoclinic orbit. At larger no confined stable solu- d,b—oxb=(ia—1)b+nS(b)+(n+i)[b[*b.  (3)
tions are found; all trajectories extend to infinity.
The stationary solution of the second kind, traveling wave We consider the SW solution perturbed by the wave with
(TW) with A;#A,#0, describes two counterpropagating different wave numberk +q andK —q:
waves with different amplitudes and phase velocities. In o , .
our case of a subcriticaith respect to an unforced system b=eKXTiO(/\. A+ Be7 19X+ B,e!9%). (4)
regime, TW is unstable; trajectories starting near TW either
approach the stablgtationary or periodicSW or extend to  Substituting Eq.(4) into Eq. (3) yields the dispersion rela-
infinity. In the supercritical casey, =1, as reported ifi14],  tion, which reveals that the long-wave perturbation is the
TW can be stable. most dangerous one. Even in the long-wave liqt0 the
We now present the results of the stability analysis ofdispersion relation has a complicated implicit form and is
stationary MC SW with respect to sideba(®B) perturba- analyzed numerically.
tions. This is done in the framework of Eq4$). For simplic- We find that forn>0 all MC SW are SB-unstable. This
ity we consider here the case— 0, which corresponds to could be expected, since in this case the cubic term i(&qg.
the weak nonlinear interaction of the envelopes in comparidoes not saturate the instability. For slightly negativéhe
son with saturation. We introduce a transformationdomain of SB-stability is located near the left boundary of
S(f(X,7))=f*(—X,7) describing the SW symmetry and the SW’s existence domain and broadens whelfecreases.
through which the amplitudes, ,a, are interrelatedin the ~ Forn=<—1, the subdomain of SB-stability is surrounded by



3746 BRIEF REPORTS 55

SB-instability regions. It moves towards the center of exist-agreement with the linear stability analysis. This SW first
ence domain and both become more symmetric with respeepproaches its stationary state, which collapses, transferring
to the vertical axis=0. its energy via the nonlinear term to other harmonics. One of

The phase diagrams for= —3,—0.2 are shown in Fig. 2. them, withé= —0.1, achieves its stationary state, which ac-
In the casen=-—3 all solutions (except for those with cording to the linear stability analysis is SB-stable.
8<n) bifurcate supercriticallywith 7 taken as a bifurcation In the casen=—0.2[see Fig. &)], the MC-perturbation
parameterand the SB-stable SW is not separated from thepjtially also tends to a stationary state, which being SB-
origin by an unstable manifold. Therefore, any small MC-nstable collapses. However, none of the harmonics achieves
perturbation grows to a stationary SW, if the latter is SB-jts final amplitude, since it does not possess enough energy
stable. ) ) __ to surpass the barrier—an unstable maniffdee inset in

In the casen=—0.2, all MC SW bifurcating supercriti- Fig. 2(b)]. If it does, it would achieve a stationary state and
cally are SB-unstable for almost any. For »>1.2, SB-  would be SB-stable. As a result of the SB-instability, an
stable MC SW's are possible only below the linear stabilityjrregular behavior sets in. Numerical calculations show that
threshold»s, and they are separated from the stable zerqt persists with unfading spectral amplitudes during more
solution by the unstable branch. Therefore, stationary MGhan 2000 units of dimensionless time. To our knowledge,
SW can be reached only via a finite-amplitude perturbationthe chaos-driving mechanism here differs from those in
For small amplitudesy<1.2 there exists a bandwidth of SB- [7,15] and is based on the following factor§) SB-stable
stable SW’s which are not separated from the origin by arsw's are separated from zero solution by an unstable mani-
unstable manifold and can be reached from an infinitesimald; (ii) other SW’s are SB-unstabléii) the zero solution
perturbation. is unstable;(iv) the energy of initial perturbation is suffi-

We solve Eq.(3) numerically to verify and extend the ciently low.
results of our linear stability analysis and to study the behav- As a conclusion, we derived a set of amplitude equations
ior of nonmonochromatic waves. Equati@®) is solved us-  for the envelope of waves excited by the parametric reso-
ing the second-order predictor-corrector scheme imance. The sideband instability of SW was found to be a
0<X=20m with the periodic boundary conditions. The ac- route for the onset of an irregular behavior for a small satu-
curacy of the numerics is checked by using different timeration coefficient. For a strong nonlinear damping the side-
and space discretization steps. Moreover, when a stationapand instability of a MC-wave leads to the emergence of a
SW solution is achieved, its amplitude and phase are in pemC-wave with a different wavelength.
fect agreement with those obtained analytically.

The numerical simulation of Eq3) confirms the results
of the linear stability analysis. Figure 3 shows the evolution |.K. was supported by the Center for Absorption in Sci-
of the SW's spectra fo= 2 andn=-3,—-0.2. As an ini- ence, Ministry of Immigrant Absorption, State of Israel, and
tial condition we use a MC-wave with a weak noise within by Y. Winograd Chair of Fluid Mechanics and Heat Transfer
the band shown in Fig. 2 by dashed lines. at Technion. A.O. was patrtially supported by the Fund for

In the casen=-—3 [see Fig. 8)], the initial MC- the Promotion of Research at the Technion and Technion
perturbation corresponds #®=0.8 and it is SB-unstable in V.P.R. Fund—C. Wellner Research Fund.
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