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Regular and irregular regimes of binary fluid convection excited by parametric resonance

Igor Keller, Alexander Oron, and Pinhas Z. Bar-Yoseph
Faculty of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

~Received 24 July 1996!

A set of two asymptotically correct amplitude equations for envelopes of two counterpropagating waves in
a horizontal layer of a binary fluid, excited by parametric resonance, is derived and studied. The only stable
stationary monochromatic solution possible is standing wave~SW!. It can lose its stability in several ways.
Sideband instability of SW, similar to that studied by Eckhaus, is possible here and results in either the onset
of SW with different wavelength or an irregular regime. The transitions caused by sideband instability are
studied numerically. A qualitative explanation of the irregular behavior is proposed.@S1063-651X~97!15702-6#

PACS number~s!: 47.35.1i, 05.45.1b, 47.27.Te
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The growing interest in the study of time-modulated fr
convection, started first by Gershuni and Zhukhovitsky@1#,
is triggered by unfolding new mechanisms of instability.
such systems as binary liquids@2#, multilayer systems@3#,
and nematic liquid crystals@4#, which undergo Hopf bifurca-
tion in the absence of modulation, strong destabilizat
based on the resonance phenomena can be observed
presence of modulation@5–7#.

It seems that less attention was paid to the fact that in
extended system with translational and reflection symmet
undergoing Hopf bifurcation, when modulation amplitu
ĥ is small and the group velocity of an oscillatory mode do
not vanish, the resonance-instability domain expands
formly whenĥ increases. This results in a new set of amp
tude equations, which due to nontraditional but relevant s
ing contains advective terms but leaves out the diffus
ones. In this paper we derive these equations by perform
a weakly nonlinear analysis of Soret-driven convection i
binary mixture, although they may be encountered in a wi
class of extended systems with the above-mentioned sym
tries.

Consider an infinite horizontal layer of incompressible
nary mixture heated from below and subject to vertical
brations. The basic equations are the Boussinesq equa
for a binary mixture with Soret effect and modulated bo
force, normalized by the layer’s depth and viscous time
space and time, respectively,

~¹42] t¹
2!c1RP21~11ĥsinvt !]x~T1CC!5N~¹2c!,

~P21¹22] t!T1]xc5N~T!,

2] tC1LP21¹2~T1C!1]xc5N~C!.

Herec is the stream function;T andC are deviations of
temperature and concentration from their linear equilibri
profiles, respectively;]x ,] t denote derivatives with respec
to the corresponding variable,N( f )[]xc]zf2]zc]xf ; R is
the Rayleigh number;v and ĥ are frequency and relativ
amplitude of modulation, respectively;P is the Prandtl num-
ber; L is the Lewis number; andC is the separation ratio
~Soret parameter!.
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Earlier, the linear stability analysis of the equilibrium
statec5T5C50 was carried out in@5,6#. Saunderset al.
@5# considered simplified free-free boundary conditio
c5]z

2c5T5C50 atz50,1. A more realistic configuration
was considered by Terroneset al. @6# for quite a narrow
range of parameters, since the variety of mechanisms
cluded in the problem~Dufour and Soret effects, an impose
solutal gradient! makes a comprehensive study almost i
possible. They revealed a strong destabilizing effect
modulation on stability of the equilibrium for negativeC,
finite ĥ, and resonant frequencies.

Let us first briefly present the results of the linear stabil
analysis of the equilibrium. The boundary conditio
c5]zc5T5]z(C1T)50 at z50,1 are valid for rigid im-
permeable boundaries held at uniform temperature. The
merical procedure is similar to that used in@6#: the basic
equations are projected onto a finite-dimension space u
the Galerkin method and the resulting set of the ODE’s
analyzed using the Floquet technique. A typical stability m
displays a set of neutral curvesRc(k) for various values of
ĥ. In the unmodulated case,ĥ50, the neutral curve is a
manifold of Hopf bifurcation points~Fig. 1!.

When the modulation is turned on, the modes whose H
frequency is resonant to the modulation frequency beco
strongly destabilized. In Fig. 1 such a resonance mode
k53.12 and its Hopf frequencys is v/2 ~so-called strong
resonance!.

A frequency locking and destabilization of neighborin
modes leads to the emergence of resonance instability
mains confined by curve 1 and curves 2–5, respectiv
These domains are geometrically similar, and in the stro
resonance case they expand proportionally toĥ. Our calcu-
lations carried out for different frequencies show that s
ondary resonances, withmv52s, m52,3 . . . , arealso
possible, but all these have a weak influence on the stab
threshold as the corresponding instability domains expan
ĥm.

Let us now turn to the weakly nonlinear analysis insi
the resonance-instability domain. We introduce a small
rameterm, measuring subcriticality, and different time an
space scales,t,t,x,X. In the vicinity of the resonant fre-
quency, i.e., when mv52s1O(m), one has
DR;Dk;ĥm;m, thus, the relevant scaling for the ‘‘slow’
3743 © 1997 The American Physical Society
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3744 55BRIEF REPORTS
time and space variables ist5mt, X5mx. A state of the
system is described by superposition of two counterpropa
ing waves

U5a1u1~z!ei ~kx2st !1a2u2~z!ei ~kx1st !1c.c.

Here vectorU5$c,T,C% describes the state of the syste
a1(t,X),a2(t,X) are complex amplitudes slowly varyin
with time and space, andu1 ,u2 are vertical eigenvectors o
the corresponding linear eigenvalue problem at the Hopf
furcation point.

The coupled equations fora1 anda2 are obtained from
the solvability condition at orderm3/2. At this order one ob-
tains after a proper rescaling the following set:

]ta12]Xa15~l1ua1u21l2ua2u21r!a11ha2 , ~1a!

]ta21]Xa25~l2* ua1u21l1* ua2u21r* !a21ha1 . ~1b!

Here l1 ,l2 are complex coefficients,l1r561; indices
‘‘ r ’’ and ‘‘ i ’’ from now on denote real and imaginary part
respectively;h;ĥm is a real positive parameter representi
the rescaled amplitude of modulation;r5a i21 is a linear
gain anda is the detuning parameter.

The negative real part ofr corresponds to the subcritica
domain with respect to the unmodulated case. In the su
critical domain, i.e., above the neutral curve 1 in Fig. 1,
bandwidth of unstable modes isDk;m1/2, which calls for
two slow space scales,X15m1/2x, X25mx. From the solv-
ability condition at orderm one then obtains two equation
for a1 anda2 with advective termss]X1a1 and 2s]X1a2,

wheres is the group velocity@7,9#. These terms cannot b

FIG. 1. A typical stability map of the equilibrium showing th
Rayleigh numberRc vs wave numberk. Curve 1 shows the neutra

curve in an unmodulated case. Curves 2–5 correspond toĥÞ0.
Parameters shown are relevant for 0.4% wt. water-ethanol mix
at 15 °C @8#. If modulation is produced by vertical vibration of
layer of the depth of 1.5 mm on Earth, then the dimensional am
tude and frequency of vibrations are.50 cm and.1 sec21, respec-

tively, for ĥ50.05.
t-

,

i-

r-
e

eliminated by using a moving frame of reference like in t
case of a single wave, because of the cross terms, descr
the waves’ interactions. To overcome this difficulty seve
authors assumed smallness ofs @9#, used averaging over th
scaleX1 @10#, or focused on a single wave, neglecting t
second one@11#.

The coefficients of Eqs.~1! for Soret-driven convection
were calculated in@12#. The group velocitys was found to
be finite, thus omitting the advective terms or pushing th
into the next order~that allows the derivation of the ampli
tude equation! yields incorrect equations in the unmodulat
case. In the case of~resonant! modulation these terms tak
their place in the amplitude equation naturally, due to
appropriate scaling.

Consider monochromatic~MC! solutions for Eqs.~1! in
the formaj5Ajexp(iKX1iuj), j51,2, where amplitudesAj
and phasesu j are real functions oft. One readily obtains a
set of three real equations forA1 ,A2 andu[u12u2 ~due to
the translational symmetryu11u2 decouples from the equa
tions; see@14#!:

]tA15r rA11hA2cosu1l1rA1
31l2rA2

2A1 ,

]tA25r rA21hA1cosu1l1rA2
31l2rA1

2A2 , ~2!

]tu5S l1i1l2i2
h

A1A2
sinu D ~A1

21A2
2!12d,

whered is a generalized detuning coefficient,d5K1a.
Equations~2! were considered earlier by Rieckeet al.

@14# and Walgraef@13# mainly in the supercritical~with re-
spect to unforced system! domain, i.e., forr r51. Our re-
sults, corresponding to the caser r521, are in qualitative
agreement with those received by@14#.

Equations~2! admit two kinds of stationary nontrivial so
lutions. The solution of the first kind, withA15A25A,
u152u25Q, describes standing waves~SW!,

A6
2 5@n2d6Ah2~n211!2~11dn!2#/l i~11n2!,

hsinQ65l iA6
2 1d, l5l11l2 , n5l r /l i .

The stability of SW with respect to harmonic perturb
tions ~of the same wavelength as SW! can be studied in the
framework of Eqs.~2!.

SW branches off the trivial state of Eqs.~2! at the station-
ary bifurcation pointhS

2511d2 supercritically ~subcriti-
cally! @14# when n2d,0(.0). The most unstable mod
losing stability first has the wave numberK52a. In the
case of subcritical bifurcation there is the saddle-node bi
cation point hSN5(11nd)/A11n2, where two branches
A1 ~stable! andA2 ~unstable! merge.

In the casen.0 with a further increase of the modulatio
amplitudeh, SW loses stability either with respect to osc
latory perturbation of SW-type at the Hopf bifurcation poi
hH5A1/41(1/2n2d)2, where stable periodic SW bifurcate
supercritically, or with respect to perturbations of a traveli
wave’s type athT5A(l2r21)21(l i12d)2/2, where the
stationary traveling wave bifurcates subcritically.

Stability of periodic SW, corresponding to two-frequen
wave motion~waves with periodically time-modulated am
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plitudes!, is next studied numerically. It loses stability whi
merging with unstable solutionsA2 or originA50, produc-
ing a homoclinic orbit. At largerh no confined stable solu
tions are found; all trajectories extend to infinity.

The stationary solution of the second kind, traveling wa
~TW! with A1ÞA2Þ0, describes two counterpropagatin
waves with different amplitudes and phase velocities@14#. In
our case of a subcritical~with respect to an unforced system!
regime, TW is unstable; trajectories starting near TW eit
approach the stable~stationary or periodic! SW or extend to
infinity. In the supercritical case,r r51, as reported in@14#,
TW can be stable.

We now present the results of the stability analysis
stationary MC SW with respect to sideband~SB! perturba-
tions. This is done in the framework of Eqs.~1!. For simplic-
ity we consider here the casel2→0, which corresponds to
the weak nonlinear interaction of the envelopes in comp
son with saturation. We introduce a transformati
S„f (X,t)…5 f * (2X,t) describing the SW symmetry an
through which the amplitudesa1 ,a2 are interrelated~in the

FIG. 2. The phase diagram of a MC SW for~a! n523 and~b!
n520.2. The curve SN consists of saddle-node bifurcation poi
the curveS shows the linear stability threshold of the equilibriu
and consists of steady bifurcation points; shaded is the domai
SB-stability of MC SW bounded by the curve SB. Insets: Bifurc
tion diagram of MC SW obtained along the corresponding das
line. The stable branch is shown by a solid curve, the unstable
branching subcritically by a dashed curve, and the SB-unstable
by a dotted curve.
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case of SW!. This allows us to study the envelope of a no
monochromatic time-dependent SW using only one equa
for propagating, say, rightward component. Substitut
l250, a15l i

21/2b into Eq. ~1a! yields

]tb2]Xb5~ ia21!b1hS~b!1~n1 i !ubu2b. ~3!

We consider the SW solution perturbed by the wave w
different wave numbersK1q andK2q:

b5eiKX1 iQ~Al iA1b1e
2 iqX1b2e

iqX!. ~4!

Substituting Eq.~4! into Eq. ~3! yields the dispersion rela
tion, which reveals that the long-wave perturbation is t
most dangerous one. Even in the long-wave limitq→0 the
dispersion relation has a complicated implicit form and
analyzed numerically.

We find that forn.0 all MC SW are SB-unstable. Thi
could be expected, since in this case the cubic term in Eq~3!
does not saturate the instability. For slightly negativen the
domain of SB-stability is located near the left boundary
the SW’s existence domain and broadens whenn decreases.
For n&21, the subdomain of SB-stability is surrounded

s;

of
-
d
es
ne

FIG. 3. The time evolution of the Fourier spectrum of the stan
ing wave’s envelope for~a! n523 and~b! n520.2. As an initial
condition we use a MC SW corresponding toK̃50.8, a50 and
K̃520.7,a50, respectively, perturbed by a weak noise. Their c
responding stationary states are SB-unstable and therefore coll
As a result, a different SB-stable stationary SW~a! or an irregular
regime~b! sets in.
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SB-instability regions. It moves towards the center of ex
ence domain and both become more symmetric with res
to the vertical axisd50.

The phase diagrams forn523,20.2 are shown in Fig. 2
In the casen523 all solutions ~except for those with
d,n) bifurcate supercritically~with h taken as a bifurcation
parameter! and the SB-stable SW is not separated from
origin by an unstable manifold. Therefore, any small M
perturbation grows to a stationary SW, if the latter is S
stable.

In the casen520.2, all MC SW bifurcating supercriti-
cally are SB-unstable for almost anyh. For h.1.2, SB-
stable MC SW’s are possible only below the linear stabi
thresholdhS , and they are separated from the stable z
solution by the unstable branch. Therefore, stationary
SW can be reached only via a finite-amplitude perturbati
For small amplitudesh,1.2 there exists a bandwidth of SB
stable SW’s which are not separated from the origin by
unstable manifold and can be reached from an infinitesi
perturbation.

We solve Eq.~3! numerically to verify and extend th
results of our linear stability analysis and to study the beh
ior of nonmonochromatic waves. Equation~3! is solved us-
ing the second-order predictor-corrector scheme
0<X<20p with the periodic boundary conditions. The a
curacy of the numerics is checked by using different ti
and space discretization steps. Moreover, when a statio
SW solution is achieved, its amplitude and phase are in
fect agreement with those obtained analytically.

The numerical simulation of Eq.~3! confirms the results
of the linear stability analysis. Figure 3 shows the evolut
of the SW’s spectra forh5A2 andn523,20.2. As an ini-
tial condition we use a MC-wave with a weak noise with
the band shown in Fig. 2 by dashed lines.

In the casen523 @see Fig. 3~a!#, the initial MC-
perturbation corresponds tod50.8 and it is SB-unstable in
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agreement with the linear stability analysis. This SW fi
approaches its stationary state, which collapses, transfe
its energy via the nonlinear term to other harmonics. One
them, withd520.1, achieves its stationary state, which a
cording to the linear stability analysis is SB-stable.

In the casen520.2 @see Fig. 3~b!#, the MC-perturbation
initially also tends to a stationary state, which being S
unstable collapses. However, none of the harmonics achi
its final amplitude, since it does not possess enough en
to surpass the barrier—an unstable manifold@see inset in
Fig. 2~b!#. If it does, it would achieve a stationary state a
would be SB-stable. As a result of the SB-instability,
irregular behavior sets in. Numerical calculations show t
it persists with unfading spectral amplitudes during mo
than 2000 units of dimensionless time. To our knowled
the chaos-driving mechanism here differs from those
@7,15# and is based on the following factors:~i! SB-stable
SW’s are separated from zero solution by an unstable m
fold; ~ii ! other SW’s are SB-unstable;~iii ! the zero solution
is unstable;~iv! the energy of initial perturbation is suffi
ciently low.

As a conclusion, we derived a set of amplitude equatio
for the envelope of waves excited by the parametric re
nance. The sideband instability of SW was found to be
route for the onset of an irregular behavior for a small sa
ration coefficient. For a strong nonlinear damping the si
band instability of a MC-wave leads to the emergence o
MC-wave with a different wavelength.
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